How to create a (total) Ghrelin calibration curve?

Version 3
by (unknown)
Version 23
by (unknown)

Deletions or items before changed

Additions or items after changed

1 -
<math>x=2</math>
+
== Computing Ghrelin calibration curve using R ==
2
3 +
===This article describes creating calibration curve, and measuring the total-ghrelin concentration ===
4
5 +
The calibration curve can be created using R, and libracy "drc". Optionally, one can use library "sfmisc" for formatting of the labels on plot axis.
6
7 -
<math>
+
We will assume a 4-parameter log-logistic model:
8 -
x = {\left( {\frac{{{e^b}\left( {y - d} \right)}}{{c - y}}} \right)^{\frac{1}{b}}}
+
9 -
</math>
+
[[Image(LL4.png, 300px)]]
10 +
11 +
The R code is attached below.
12 +
13 +
The example assumes the data to be available in file "ghrelin_conc std_a std_b avg.csv"
14 +
15 +
The measured data:
16 +
17 +
|| '''Ghrelin (ng/ml)''' || '''Standard a''' || '''Standard b''' ||
18 +
|| 1000000 ||-0.040596823||-0.052699697 ||
19 +
|| 100000 ||0.136105144||0.119766263 ||
20 +
|| 10000 ||0.61356354||0.606906959 ||
21 +
|| 1000 ||0.846543873||0.839887292 ||
22 +
|| 100 ||0.887693646||0.88345764 ||
23 +
||0||0.896770802||0.896165658 ||
24 +
25 +
{{{
26 +
27 +
##### Install libraries
28 +
install.packages("drc")
29 +
install.packages("sfsmisc")
30 +
require(drc)
31 +
library(sfsmisc)
32 +
33 +
##### Read the data
34 +
hormone.data <- read.csv("ghrelin_conc std_a std_b avg.csv")
35 +
hormone.data <- hormone.data[,1:3]
36 +
colnames(hormone.data)[1:3] <- c("Concentration","Response_1", "Response_2")
37 +
38 +
##### Reorganize the data
39 +
hormone.data <- reshape(hormone.data, varying=c("Response_1","Response_2"), direction="long", v.names=c("Response"))
40 +
hormone.data <- hormone.data[,c("Concentration", "Response")]
41 +
42 +
##### Fitting the model (4-parameter log-logistic function)
43 +
hormone.data.model <- drm(Response ~ Concentration, data = hormone.data, fct = LL.4())
44 +
summary(hormone.data.model)
45 +
46 +
}}}
47 +
48 +
The resultant parameters of a log-logistic equation are:
49 +
50 +
{{{
51 +
Model fitted: Log-logistic (ED50 as parameter) (4 parms)
52 +
Parameter estimates:
53 +
Estimate Std. Error t-value p-value
54 +
b:(Intercept) 9.5057e-01 2.2294e-02 4.2638e+01 0
55 +
c:(Intercept) -7.6010e-02 6.9075e-03 -1.1004e+01 0
56 +
d:(Intercept) 8.9163e-01 3.3216e-03 2.6843e+02 0
57 +
e:(Intercept) 2.5221e+04 7.7727e+02 3.2448e+01 0
58 +
}}}
59 +
60 +
The calibration curve can be plotted using the commands below:
61 +
62 +
{{{
63 +
##### Plotting a nice plot
64 +
par(pty="s", mar=c(5,5,1,1))
65 +
plot(hormone.data.model, type="confidence", cex.lab=2, axes=F, xlim=c(-10,10^6))
66 +
axis(side=1, at=hormone.data[1:6,1], labels=pretty10exp(hormone.data[1:6,1]), cex.axis=1.2)
67 +
axis(side=2, at=seq(0,1,0.2), labels=seq(0,1,0.2))
68 +
plot(hormone.data.model, type="all", add=T, pch=21, col="red", lwd=1, cex=2, bg="green")
69 +
}}}
70 +
71 +
[[Image(Ghrelin.png)]]
72 +
73 +
The parameters of the eqution can be plugged into the formula below (an inverse of the model), and used in Excel, or other spreadsheet program.
74 +
75 +
[[Image(LL4-inv.png, 230px)]]
76 +
77 +
However, the concentration can be also easily estimated in R using "ED" function of the "drc" library. The code below demonstrates the concentration estimated from the response of 0.1, assuming alpha=0.05. The code returns the estimation, the error, and the condfidence interval.
78 +
79 +
{{{
80 +
##### Computing the concentration from the response, for instance for a response=0.1, and alpha=1-0.95
81 +
ED(hormone.data.model, respLev=0.1, interval="delta", type="absolute", level=0.95)
82 +
}}}