How to create a (total) Ghrelin calibration curve?

Version 5
by (unknown)
Version 23
by (unknown)

Deletions or items before changed

Additions or items after changed

1 -
||cell1||cell2||
+
== Computing Ghrelin calibration curve using R ==
2 -
||cell3||cell4||
+
3
4 -
----
+
===This article describes creating calibration curve, and measuring the total-ghrelin concentration ===
5
6 -
<math>2</math>
+
The calibration curve can be created using R, and libracy "drc". Optionally, one can use library "sfmisc" for formatting of the labels on plot axis.
7 +
8 +
We will assume a 4-parameter log-logistic model:
9 +
10 +
[[Image(LL4.png, 300px)]]
11 +
12 +
The R code is attached below.
13 +
14 +
The example assumes the data to be available in file "ghrelin_conc std_a std_b avg.csv"
15 +
16 +
The measured data:
17 +
18 +
|| '''Ghrelin (ng/ml)''' || '''Standard a''' || '''Standard b''' ||
19 +
|| 1000000 ||-0.040596823||-0.052699697 ||
20 +
|| 100000 ||0.136105144||0.119766263 ||
21 +
|| 10000 ||0.61356354||0.606906959 ||
22 +
|| 1000 ||0.846543873||0.839887292 ||
23 +
|| 100 ||0.887693646||0.88345764 ||
24 +
||0||0.896770802||0.896165658 ||
25 +
26 +
{{{
27 +
28 +
##### Install libraries
29 +
install.packages("drc")
30 +
install.packages("sfsmisc")
31 +
require(drc)
32 +
library(sfsmisc)
33 +
34 +
##### Read the data
35 +
hormone.data <- read.csv("ghrelin_conc std_a std_b avg.csv")
36 +
hormone.data <- hormone.data[,1:3]
37 +
colnames(hormone.data)[1:3] <- c("Concentration","Response_1", "Response_2")
38 +
39 +
##### Reorganize the data
40 +
hormone.data <- reshape(hormone.data, varying=c("Response_1","Response_2"), direction="long", v.names=c("Response"))
41 +
hormone.data <- hormone.data[,c("Concentration", "Response")]
42 +
43 +
##### Fitting the model (4-parameter log-logistic function)
44 +
hormone.data.model <- drm(Response ~ Concentration, data = hormone.data, fct = LL.4())
45 +
summary(hormone.data.model)
46 +
47 +
}}}
48 +
49 +
The resultant parameters of a log-logistic equation are:
50 +
51 +
{{{
52 +
Model fitted: Log-logistic (ED50 as parameter) (4 parms)
53 +
Parameter estimates:
54 +
Estimate Std. Error t-value p-value
55 +
b:(Intercept) 9.5057e-01 2.2294e-02 4.2638e+01 0
56 +
c:(Intercept) -7.6010e-02 6.9075e-03 -1.1004e+01 0
57 +
d:(Intercept) 8.9163e-01 3.3216e-03 2.6843e+02 0
58 +
e:(Intercept) 2.5221e+04 7.7727e+02 3.2448e+01 0
59 +
}}}
60 +
61 +
The calibration curve can be plotted using the commands below:
62 +
63 +
{{{
64 +
##### Plotting a nice plot
65 +
par(pty="s", mar=c(5,5,1,1))
66 +
plot(hormone.data.model, type="confidence", cex.lab=2, axes=F, xlim=c(-10,10^6))
67 +
axis(side=1, at=hormone.data[1:6,1], labels=pretty10exp(hormone.data[1:6,1]), cex.axis=1.2)
68 +
axis(side=2, at=seq(0,1,0.2), labels=seq(0,1,0.2))
69 +
plot(hormone.data.model, type="all", add=T, pch=21, col="red", lwd=1, cex=2, bg="green")
70 +
}}}
71 +
72 +
[[Image(Ghrelin.png)]]
73 +
74 +
The parameters of the eqution can be plugged into the formula below (an inverse of the model), and used in Excel, or other spreadsheet program.
75 +
76 +
[[Image(LL4-inv.png, 230px)]]
77 +
78 +
However, the concentration can be also easily estimated in R using "ED" function of the "drc" library. The code below demonstrates the concentration estimated from the response of 0.1, assuming alpha=0.05. The code returns the estimation, the error, and the condfidence interval.
79 +
80 +
{{{
81 +
##### Computing the concentration from the response, for instance for a response=0.1, and alpha=1-0.95
82 +
ED(hormone.data.model, respLev=0.1, interval="delta", type="absolute", level=0.95)
83 +
}}}