How to create a (total) Ghrelin calibration curve?

Version 6
by (unknown)
Version 23
by (unknown)

Deletions or items before changed

Additions or items after changed

1 == Computing Ghrelin calibration curve using R ==
2 +
3 +
===This article describes creating calibration curve, and measuring the total-ghrelin concentration ===
4
5 The calibration curve can be created using R, and libracy "drc". Optionally, one can use library "sfmisc" for formatting of the labels on plot axis.
6 +
7 +
We will assume a 4-parameter log-logistic model:
8 +
9 +
[[Image(LL4.png, 300px)]]
10 +
11 The R code is attached below.
12 +
13 +
The example assumes the data to be available in file "ghrelin_conc std_a std_b avg.csv"
14 +
15 +
The measured data:
16 +
17 +
|| '''Ghrelin (ng/ml)''' || '''Standard a''' || '''Standard b''' ||
18 +
|| 1000000 ||-0.040596823||-0.052699697 ||
19 +
|| 100000 ||0.136105144||0.119766263 ||
20 +
|| 10000 ||0.61356354||0.606906959 ||
21 +
|| 1000 ||0.846543873||0.839887292 ||
22 +
|| 100 ||0.887693646||0.88345764 ||
23 +
||0||0.896770802||0.896165658 ||
24
25 {{{
26
27 ##### Install libraries
28 install.packages("drc")
29 install.packages("sfsmisc")
30 require(drc)
31 library(sfsmisc)
32
33 ##### Read the data
34 hormone.data <- read.csv("ghrelin_conc std_a std_b avg.csv")
35 hormone.data <- hormone.data[,1:3]
36 colnames(hormone.data)[1:3] <- c("Concentration","Response_1", "Response_2")
37
38 ##### Reorganize the data
39 hormone.data <- reshape(hormone.data, varying=c("Response_1","Response_2"), direction="long", v.names=c("Response"))
40 hormone.data <- hormone.data[,c("Concentration", "Response")]
41
42 ##### Fitting the model (4-parameter log-logistic function)
43 hormone.data.model <- drm(Response ~ Concentration, data = hormone.data, fct = LL.4())
44 summary(hormone.data.model)
45
46 +
}}}
47 +
48 +
The resultant parameters of a log-logistic equation are:
49 +
50 +
{{{
51 +
Model fitted: Log-logistic (ED50 as parameter) (4 parms)
52 +
Parameter estimates:
53 +
Estimate Std. Error t-value p-value
54 +
b:(Intercept) 9.5057e-01 2.2294e-02 4.2638e+01 0
55 +
c:(Intercept) -7.6010e-02 6.9075e-03 -1.1004e+01 0
56 +
d:(Intercept) 8.9163e-01 3.3216e-03 2.6843e+02 0
57 +
e:(Intercept) 2.5221e+04 7.7727e+02 3.2448e+01 0
58 +
}}}
59 +
60 +
The calibration curve can be plotted using the commands below:
61 +
62 +
{{{
63 ##### Plotting a nice plot
64 par(pty="s", mar=c(5,5,1,1))
65 plot(hormone.data.model, type="confidence", cex.lab=2, axes=F, xlim=c(-10,10^6))
66 axis(side=1, at=hormone.data[1:6,1], labels=pretty10exp(hormone.data[1:6,1]), cex.axis=1.2)
67 axis(side=2, at=seq(0,1,0.2), labels=seq(0,1,0.2))
68 plot(hormone.data.model, type="all", add=T, pch=21, col="red", lwd=1, cex=2, bg="green")
69 +
}}}
70
71 +
[[Image(Ghrelin.png)]]
72 +
73 +
The parameters of the eqution can be plugged into the formula below (an inverse of the model), and used in Excel, or other spreadsheet program.
74 +
75 +
[[Image(LL4-inv.png, 230px)]]
76 +
77 +
However, the concentration can be also easily estimated in R using "ED" function of the "drc" library. The code below demonstrates the concentration estimated from the response of 0.1, assuming alpha=0.05. The code returns the estimation, the error, and the condfidence interval.
78 +
79 +
{{{
80 ##### Computing the concentration from the response, for instance for a response=0.1, and alpha=1-0.95
81 ED(hormone.data.model, respLev=0.1, interval="delta", type="absolute", level=0.95)
82 -
83 }}}